
  

A Review of the Noise Uncertainty Impact on Energy 

Detection with Different OFDM System Designs 

Josip Lorincz1*, Ivana Ramljak2 and Dinko Begušić 1 

1 University of Split, FESB, R. Boskovica 32, 21000 Split, Croatia;  
2 Elektroprenos – Elektroprijenos BiH a.d. Banja Luka, Mostar, 88000, Bosnia and Herzegovina; 

ivana.marincic1988@gmail.com 

* Correspondence author: josip.lorincz@fesb.hr; Tel.: +38521305665 

 

 
Abstract: Cognitive radio networks (CRN) based on spectrum sensing represent intelligent wireless 

communication technology dedicated to a more efficient exploitation of the available frequency spectrum. 

Although the energy detection (ED) method was found to be a promising candidate for spectrum sensing in the 

CRN, its detection performance is challenged by the noise fluctuations. These fluctuations, known as noise 

uncertainty (NU), may vary beyond what is estimated due to changes in temperature, interference and filtering. In 

this work, the influence of NU on the performance of ED for signals transmitted using an orthogonal frequency 

division multiplexing (OFDM) technique is reviewed. Besides that, thorough analyses are performed by means of 

extensive simulations of the ED process for three different OFDM system designs based on rate adaptation, margin 

adaptation and mutual rate and margin adaptation. The analyses presented in this review paper give a systematic 

insight into how various OFDM modulations, NU levels, probabilities of a false alarm, number of samples used 

in the ED process and levels of signal-to-noise ratio impact the probability of signal detection and the overall ED 

performance of different OFDM system designs. The results obtained through simulations show that the trade-off 

among the parameters analyzed can bring improvements in the ED process of different OFDM system designs. 

The research challenges for improvement of the main ED weaknesses have been further discussed, with a 

performance comparison of the ED method with other prominent local spectrum sensing methods. The survey 

results presented constitute a reference for improvements of the broadly-accepted ED approach.  
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1. Introduction 

In the last decade, fast-growing wireless services have become popular worldwide due to a high demand for 

information from mobile applications, social networking sites, mobile gaming and mobile video services. Analyses 

indicate that many licensed wireless spectrum portions are not effectively used and idle in some specific periods 

of the time and in certain geographical areas [1-2]. 

According to the reports concerning the inefficiency of the currently fixed spectrum allocation, the academic 

and industrial sectors open the discussions on intelligent sharing of the licensed and unlicensed spectrum [3]. 

Cognitive radio networks (CRNs) are proposed as a promising solution which can minimize such inefficient 

spectrum utilization. CRN represents a new intelligent wireless communication technology whose purpose is the 

detection of an available frequency spectrum. To solve the inefficiency of a frequency spectrum assignment policy, 

CRN as technology is based on an approach named “spectrum sensing “. The objective of spectrum sensing is to 

detect inactivity of the licensed/primary user (PU) in the allocated frequency band and if it is free, make provisions 

for the unlicensed/secondary user (SU) so that it does not affect the efficiency of the PU. Thus, the utilization of 

vacant band by the SU can significantly alleviate the spectrum scarcity problem [4].  

The licensed band CR uses the spectrum that is especially meant for licensed user access. This CR approach 

checks PU activity on a certain channel of the spectrum. If the PU is active, then it switches unlicensed users (SUs) 

to the other channel. If the PU is not active, then it gives access to the unlicensed users (SUs) and monitors the 

entire channel for the PU. In the case of an unlicensed band, CR uses the unlicensed parts of the spectrum that are 

available for SUs only. Therefore, there is no need for the cognitive radio to sense the entire spectrum before the 

SUs use the channel [5].  
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Spectrum-sensing methods can be classified into different categories, such as coherent and non-coherent 

detection or cooperative and non-cooperative detection. In the case of coherent detection, a priori knowledge of 

the PU signal is required to detect spectrum holes, while non-coherent detection is performed without the need for 

a priori knowledge of the PU signal [6-7]. Based on this classification, literature has proposed a variety of 

spectrum-sensing methods, and the most prominent ones are energy detection, matched filter detection, 

cyclostationary feature detection and entropy-based detection [8-10]. These detection techniques also belong to 

non-cooperative detection, which is an approach for the detection of PU signals based on the local observations of 

SU. Other techniques such as centralized or distributed-approach detection belong to cooperative detection which 

refers to spectrum-sensing methods that enable multiple SUs to share their local sensing information for more 

accurate PU detection [11].  

Among all the aforementioned spectrum-sensing techniques, energy detection (ED) has the advantages of 

low complexity and cost. Thus, it is especially suitable for wideband spectrum sensing. For that reason, ED as a 

non-coherent and non-cooperative technique is broadly accepted as the most commonly used technique for 

spectrum sensing in CRN, which supports the use of the ED technique for further analyses in this work. 

The ED technique is the semi-blind process which does not require information about wireless channel gains 

and other parameter estimates concerning PU signal, and only exact information about noise power at the position 

of the SU is needed for an accurate detection of the PU. However, accurate noise power estimation is not always 

possible, since noise may be impacted by the effects from various sources such as thermal noise, filtering effects, 

radio-frequency circuits and the interference caused by other signals. Such effects affect noise power estimation 

which causes the estimation error referred to as noise uncertainty (NU) [9]. Although ED is found to be a promising 

candidate for spectrum sensing in CRNs, its detection performance can be significantly challenged by the NU [12]. 

Hence, this paper has presented trade-off analyses concerning the impact of NU on ED performance.  

Orthogonal frequency-division multiplexing (OFDM) is seen as a promising candidate to be used in CRNs 

because of its capability to mitigate inter-symbol interference (ISI) and combat multipath fading using a cyclic 

prefix (CP) [13-15]. OFDM has become the modulation of choice in many contemporary broadband 

communication systems. Different modulation schemes are used in OFDM systems including Binary Phase Shift 

Keying (B-PSK), Quadrature Phase-Shift Keying (Q-PSK), 16-Quadrature Amplitude Modulation (16-QAM) and 

64/128/256/1024/ … -QAM. The selection of the best modulation technique depends upon signal-to-noise ratio 

(SNR), Bit Error Rate (BER), cost-effectiveness and the ability to provide specific data rates [16, 17]. OFDM 

systems are designed based on three different approaches, namely the rate-adaptive (RA) approach which tends to 

maximize the transmission rate under BER and transmit (Tx) power constraint, the margin-adaptive (MA) 

approach which tends to minimize Tx power under BER and the transmission rate constraint and mutual RA and 

MA approach which jointly optimize the transmission rate and Tx power under BER constraint. Each of these 

OFDM system design approaches impacts the ED process in CRNs in its own particular way. 

Hence, this review work analyzes the influence of NU on ED performance for transmitting signals using 

different OFDM system designs. Analyses are performed based on developed algorithms which enable extensive 

simulations of ED performance for the OFDM signals impacted by NU. The major contribution of this work is a 

fundamental trade-off evaluation concerning how parameters such as probabilities of a false alarm, OFDM 

modulations, number of samples used in the ED process, Tx power of PU, levels of SNR at position of SU, and 

values of NUs impact the probability of PU signal detection in the ED process for three different OFDM system 

designs.  

The paper is structured as follows: Section 2 gives an overview of the work on noise estimation and NU 

impact on ED of OFDM signals. Descriptions of different OFDM system designs and communication technologies 

which use OFDM as a transmission technique are given in Section 3. Basic spectrum-sensing model based on ED 

of signals without NU is introduced in Section 4. In Section 5, a more realistic spectrum-sensing model which 

takes into account the impact of NU on the probability of ED is presented. Developed algorithms for simulating 

ED of OFDM signals impacted by different levels of NUs are described in Section 6. The results of the simulations 

obtained for ED of OFDM signals are presented and discussed in Section 7. Section 8 is dedicated to the discussion 

related to future research challenges for improving the ED method considering the simulation results obtained 

presented in Section 7. Finally, some concluding remarks are given in Section 9. 

 

 

 

https://www.google.ba/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&cad=rja&uact=8&ved=0ahUKEwiDnPiwhfXYAhXF16QKHeH-AfYQFghKMAc&url=http%3A%2F%2Fwww.eng.auburn.edu%2F~roppeth%2Fcourses%2FTIMS-manuals-r5%2FTIMS%2520Experiment%2520Manuals%2FStudent_Text%2FVol-D1%2FD1-08.pdf&usg=AOvVaw0HiIF_jZD-PFwXlXgdXWBm
https://www.google.ba/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&cad=rja&uact=8&ved=0ahUKEwiDnPiwhfXYAhXF16QKHeH-AfYQFghKMAc&url=http%3A%2F%2Fwww.eng.auburn.edu%2F~roppeth%2Fcourses%2FTIMS-manuals-r5%2FTIMS%2520Experiment%2520Manuals%2FStudent_Text%2FVol-D1%2FD1-08.pdf&usg=AOvVaw0HiIF_jZD-PFwXlXgdXWBm
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2. Related work on noise estimation and NU impact on ED of OFDM signals 

The CR paradigm was first introduced in seminal work [18] and ED as a method for spectrum sensing of 

unknown deterministic signals was first introduced in [19]. The methods for PU detection in CRN may be strongly 

degraded by the NU. As shown in [20], closed-form probability distribution functions for a single noise sample 

and the energy of multiple noise samples are derived, allowing an optimal Neyman-Pearson detector to be 

employed when NU is present. In [12], the decision rules for the ED technique in the presence of NU are derived. 

Compared with the conventional decision rules obtained by overestimating the noise power, the proposed decision 

rules provide performance gains in terms of SNR.  

The modeling of the NU impact on the level of SNR wall below which ED will fail to be robust, no matter 

how long the channel will be observed, was introduced in [21, 22]. Some of the first analyses related to the ED 

performance under various discrete and continuous models of NU are analyzed in [23], based on that a design of 

energy detector is put forward. The theoretical analysis of the NU modeling with ED is performed in [24] showing 

that the bounded NU approximation model is a specific case of the general unbounded NU approximation model. 

In addition, a Gaussian model for the inverse noise standard deviation is proposed in [20] and a simulation example 

confirms that by properly modeling the NU, the SNR wall phenomenon can be avoided, providing useful ED 

performance at very low SNR. 

In [25], the performance of the ED with estimated noise power using the maximum likelihood criterion was 

analyzed. Authors show that NU itself does not cause the SNR wall phenomenon but is rather caused by the 

inability to refine the noise power estimation process while the observation time increases. A novel method to 

estimate the noise power from the received signal samples using a developed algorithm based on a high-pass filters 

bank and median filtering is proposed in [26]. The proposed approach ensures maintaining a constant and low 

false alarm rate in the presence of NU, without increasing the probability of misdetection, even in the low SNR 

regime and without increasing the number of spectrum-sensing samples.  

In [27], the authors proposed the concept of NU estimation which measures the level of noise using a blind 

technique based on sample covariance matrix eigenvalues of the received signal and noise using the minimum 

description length criterion. The results they obtained show that such an enhanced ED-based technique decreases 

the probability of a false alarm and increases the probability of detection. An optimal dynamic stochastic resonance 

processing method is introduced in [28] to relieve the SNR wall and corresponding NU problems in traditional ED 

under low SNR circumstances.  

Additionally, in [29], the authors study generalized energy detector (GED) performance by replacing the 

squaring operation of the amplitude of the received signal with an arbitrary positive power operation constant p 

under NU. The results prove that SNR wall is not dependent on the value of that power constant p.  The paper 

[30] analyzes the impact of noise power calibration effects on the SNR wall problem in coarse spectrum sensing 

for CR network systems based on proposed GED with an antenna array. The results of the simulation demonstrate 

that the proposed GED under the NU can reduce the SNR wall problem and achieve a lower probability of error 

compared to the conventional ED. In [31], the authors study the SNR wall under diversity reception in the presence 

of the NU and the fading for GED obtained through changing the squaring operation in ED by an arbitrary positive 

number p. It is shown that above a certain value, the effect of NU is more severe when compared to the fading. It 

is also shown that the performance is the best for values of arbitrary positive number p close to 2. Fora large value 

of sample size, the detection performance of GED becomes independent of p.  
In [7, 20, 32-35], different OFDM spectrum sensing techniques are analyzed. [7] proposes an ED method of 

spectrum sensing for OFDM signal and QPSK modulation. The paper analyzes the limitations of the simulated 

ED method. In particular, it shows how the ED technique can be implemented using the software-defined radio 

(SDR) and how the sensing performance of an implemented real-time energy detector compares to its simulated 

equivalent. In [32], the influence of the probability of PU signal detection on the probability of a false alarm was 

analyzed for the ED technique in case of the BPSK and OFDM-modulated signal in a wireless local area network 

(WLAN) and Worldwide Interoperability for Microwave Access (WiMAX) system. According to [20, 33], a 

challenge for the spectrum sensing based on ED is the ability to detect signals at low SNR levels.  

To solve the challenge of a difficult ED in low SNR environments, Differential Characteristics (DC), DC –

Pilot Tones and DC – Cyclic Prefix based on OFDM spectrum-sensing algorithms are presented in [36]. The results 

of the simulation illustrate that all three methods can achieve good performance under low SNR with the presence 

of a timing delay during the sensing process. In [37-39], spectrum-sensing algorithms based on the correlation 

properties of the OFDM cyclic prefix (CP) are presented. Algorithms for ED proposed in [38, 40] are sensitive to 

timing offset, while [39] presents the generalized likelihood ratio test with the probability of OFDM signal 

detection and a false alarm independent of the timing offset.  

In [40, 41] an optimal and sub-optimal Neyman-Pearson (NP) spectrum sensing method for detecting OFDM 

signal based on the feature of the CP is presented. A practical generalized log-likelihood ratio test is used to show 

that spectrum sensing is sensitive to NU. Mean Ambiguity Function (MAF) as a new spectrum sensing technique 

of the OFDM signal under NU is proposed in [42]. Through simulations, it is shown that the proposed detector 

can achieve good detection performance in very low SNR environments, and it is robust to NU. In [43], we have 

presented the preliminary results concerning the impact of NU on energy misdetection performance of OFDM 
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systems based on a margin (power) adaptive system design. According to the results, NU degrades the performance 

of ED for OFDM systems which use power-adaptive algorithms.  

Although NU has an impact on ED probability, according to our knowledge, this impact has not been 

thoroughly analyzed for ED of OFDM signals transmitted by means of different OFDM system designs. Hence, 

in this work, an algorithm for simulating the ED of OFDM modulated signals under versatile NUs and for different 

OFDM system designs is developed. As far as we know, this is the first review work which offers a comprehensive 

overview of the impact of Tx power adaptation in MA systems or OFDM modulation order adjustment in RA 

systems or both (Tx power and OFDM modulation order) on ED performance of OFDM signals impacted by NU. 

Additionally, the obtained results offer further insight regarding the impact of the number of samples, SNR levels 

and the probability of a false alarm on ED probability of OFDM signals transmitted by means of different OFDM 

system designs. Such an overview of NU impact on ED performance presented for different OFDM system designs 

can serve as a reference to improve ED as a broadly accepted spectrum-sensing approach.  

 

 

3. Contemporary OFDM system designs and modulations 

3.1. OFDM system design  

OFDM is a multicarrier transmission scheme. The main idea behind it is to transmit signals using a number 

of subcarriers orthogonal to each other [16]. The total bandwidth in OFDM systems is divided in a number of 

smaller bandwidths by spreading the transmitted signal over a number of subcarriers. Three types of algorithms 

(design options) are used by OFDM systems for signal transmission. The first design option is based on the so-

called margin-adaptive (MA) algorithms which strive to minimize the Tx power subject to the data rate and BER 

constraints. In order to maintain the same transmission rate (i.e. keep the constellation order M unchanged) at the 

same QoS (i.e. same BER), the Tx power should be adjusted according to the channel condition: lower Tx power 

when the channel quality is good and vice versa [44]. Assuming OFDM system with a set of subcarriers S= {1, ..., 

s, …, L}, such optimization problem can be modeled as 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑝𝑠

 𝑃𝑇 = ∑ 𝑝𝑠
𝐿
𝑠=1         (1) 

Subject to:  

𝐵𝐸𝑅𝑎𝑣 =
∑ 𝑏𝑠
𝐿
𝑠=1 𝐵𝐸𝑅𝑠

∑ 𝑏𝑠
𝐿
𝑠=1

 ≤ 𝐵𝐸𝑅𝑡ℎ       (2) 

∑ 𝑝𝑠
𝐿
𝑠=1 ≤ 𝑃𝑡ℎ          (3) 

∑ 𝑏𝑠
𝐿
𝑠=1 = 𝑐𝑜𝑛𝑠𝑡. ≤ 𝑏𝑡ℎ        (4) 

 

where 𝑝𝑠 , 𝐵𝐸𝑅𝑠 and 𝑏𝑠  are the Tx power, BER and bit rate of s-th subcarrier, respectively. At any moment, the 

optimal selection of the total instantaneous Tx power (𝑃𝑇) and consequently subcarriers Tx power must ensure 

that: average BER (𝐵𝐸𝑅𝑎𝑣) is below the predefined BER threshold 𝐵𝐸𝑅𝑡ℎ (constraint 2), the sum of all Tx powers 

of each subcarrier (𝑝𝑠) is below the overall Tx power threshold 𝑃𝑡ℎ (constraint 3) and the sum of L subcarrier bit 

rates (𝑏𝑠) is constant and below the overall bit rate threshold 𝑏𝑡ℎ (constraint 4). 

The second design option is based on the so-called rate-adaptive (RA) algorithms which aim to maximize the 

instantaneous data rate (𝑏𝑇) subject to the Tx power and BER constraints. If the Tx power is kept unchanged, in 

order to maintain the same QoS (i.e. same BER), the transmitter needs to adapt the OFDM modulation scheme 

according to the channel condition. A higher constellation order (larger M) of OFDM modulation will be used 

(which also means a higher transmission rate) when the channel quality is good and vice versa. Many practical 

OFDM systems operate with constant Tx power since an approach based on adaptive modulation selection is easier 

for practical circuit design implementation [44]. Examples of such OFDM systems are WLAN, WiMAX, etc. 

However, to enable adaptive modulation, the information about the channel quality, usually measured at the 

receiver needs to be sent back to the transmitter on a reverse channel. The RA system design can be modeled as  
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Table 1. Key features of some common OFDM-based systems [45-48] 

OFDM 

Parameter 

DAB/EUREKA 

/DAB + 

DVB-T DVB-H IEEE 802.11 

n/ac/ah 

IEEE 802.15.3a 

Channel 

Bandwidth [MHz] 1.712 6, 7, 8 5, 6, 7, 8 

802.11 n: 20 – 40 

802.11 ac: 20 -160 

802.11 ah: 1-16 

 

3,100 – 10,600 

 

 

 

Modulation 

scheme 

π⁄4-DQPSK 

QPSK, 

16QAM, 

64QAM 

QPSK, 

16QAM 

64QAM 

 

BPSK, QPSK, 16 

QAM, 64 QAM, 256 

QAM 

 

TFI –OFDM (with 128 

– point FT size), QPSK 

Guard Interval 

[µs] 24.6 (all modes) 

1/4, 1/8, 

1/16, 1/32 
1/4, 1⁄8, 

1⁄16, 1⁄32 

1/4, 1/8, 1/16 (IEEE 

802.11 n/ac) 

802.11n: 64, 128 

 

0,00947 

 

FFT size 

(k=1024) 

 

Mode I: 2k 

Mode II: 512 

Mode III: 256 

Mode IV: 1k 

 

 

2k, 8k 

 

 

2k, 4k, 

8k 

 

802.11ac: 64, 128, 

256, 512 

802.11 ah: 32, 64, 

128, 256, 512 

 

 

64, 128, 256 

Table 2. Key features of some common OFDMA-based systems [49-52] 

OFDM Parameter LTE WiMAX IEEE 802.20 

Channel bandwidth [MHz] 1.4, 3, 5, 10, 15, 20 1.25 - 28 5, 10, 20 

Modulation 

scheme 

QPSK, 

16 QAM, 

64 QAM 

BPSK, QPSK, 

16 QAM, 

64 QAM 

QPSK, 8 PSK, 

16 QAM, 

64 QAM 

Guard interval [µs] 1/4, 1/8, 1/16, 1/32 1/4, 1/8, 1/16, 1/32 6.51, 13.02, 19.53, 26.04 

FFT size (k=1024) 128, 256, 512, 1k, 

1536, 2k 

128, 256, 512, k, 2k 512, 1024, 2048 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑏𝑠

 𝑏𝑇 = ∑ 𝑏𝑠
𝐿
𝑠=1          (5) 

Subject to 

𝐵𝐸𝑅𝑎𝑣 =
∑ 𝑏𝑠
𝐿
𝑠=1 𝐵𝐸𝑅𝑠

∑ 𝑏𝑠
𝐿
𝑠=1

 ≤ 𝐵𝐸𝑅𝑡ℎ       (6) 

 

∑ 𝑝𝑠
𝐿
𝑠=1 = 𝑐𝑜𝑛𝑠𝑡. < 𝑃𝑡ℎ         (7) 

 

∑ 𝑏𝑠
𝐿
𝑠=1 ≤ 𝑏𝑡ℎ          (8) 

 

where the average BER (𝐵𝐸𝑅𝑎𝑣) must be below the predefined BER threshold 𝐵𝐸𝑅𝑡ℎ (constraint 6), the sum of 

all Tx powers of each subcarrier must be constant and below the overall Tx power threshold 𝑃𝑡ℎ (constraint 7) 

and the sum of L subcarrier bit rates must be below the overall bit rate threshold 𝑏𝑡ℎ (constraint 8).  
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Figure 1. Block diagram of the energy detection technique 

 

The third OFDM system design option is based on the contemporary bit and power loading (RA and MA) 

algorithms which strive to maximize the data rate and minimize the Tx power subject to the BER constraints in 

the channel. A motivation to jointly consider the rate and margin optimization problems can be found in the 

emerging wireless communication systems which operate under different requirements and diverse conditions. 

More specifically, power minimization is crucial when operating near other frequency-adjacent users or in 

interference-prone shared spectrum environments. Additionally, if there are enough guard bands to separate users, 

throughput maximization can be done for better channel utilization. The contemporary bit and power loading 

OFDM system design can be modeled as follows  

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑝𝑠

 𝑃𝑇 = ∑ 𝑝𝑠
𝐿
𝑠=1  and 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒

𝑏𝑠
 𝑏𝑇 = ∑ 𝑏𝑠

𝐿
𝑠=1     (9) 

Subject to 

𝐵𝐸𝑅𝑎𝑣 =
∑ 𝑏𝑠
𝐿
𝑠=1 𝐵𝐸𝑅𝑠

∑ 𝑏𝑠
𝐿
𝑠=1

 ≤ 𝐵𝐸𝑅𝑡ℎ  (10)      

∑ 𝑝𝑠 ≤ 𝑃𝑡ℎ
𝐿
𝑠=1           (11) 

∑ 𝑏𝑠 ≤ 𝑏𝑡ℎ
𝐿
𝑠=1           (12) 

 

where OFDM subcarrier Tx power and bit rate (modulation order) have been jointly optimized according to the 

channel conditions and must be below the predefined threshold values 𝑃𝑡ℎ  and 𝑏𝑡ℎ, respectively. 

 

3.2. OFDM modulations  

OFDM is used in many telecommunication systems such as a Worldwide Interoperability for Microwave 

Access (WiMAX), IEEE 802.11a/g/n/ac/ad WLAN, Long-Term Evolution (LTE), LTE Advanced (LTE - A), 

Light Fidelity (Li-Fi), modern narrow and broadband power line communications (PLC) and it will be baseline 

technology to be used for the upcoming 5th generation (5G) networks. Also, OFDM has been adopted or proposed 

for several applications such as Asymmetric Digital Subscriber Line (ADSL), Digital Audio Broadcasting (DAB), 

Digital Video Broadcasting – Handheld/ Terrestrial (DVB-H/T) and Digital Terrestrial Multimedia Broadcast 

(DTMB) [5, 53-57]. Table 1 shows the key features of some OFDM-based communication technologies.  

In addition to the OFDM technique, the OFDM access (OFDMA) technique is also used in practice. OFDMA 

is a version of OFDM modulation that happens to be optimized for multiple users, specifically for cell phones and 

other mobiles devices in cellular access networks. In OFDM users are allocated on the time domain scale only, 

while when using an OFDMA system, the user would be allocated by both, time and frequency. In OFDM, all sub-

carriers of the symbol are used for providing data to a specific user. In OFDMA, the sub-carriers of each symbol 

may be divided among multiple users, thus enabling better use of the radio resources. OFDMA's dynamic 

allocation enables better use of the channel for multiple low-rate users and for the avoidance the narrowband fading 

and interference. OFDMA is used in IEEE 802.16 (WiMAX), IEEE 802.20 (iBurst) and LTE systems. OFDMA 

is also a candidate access method for the IEEE 802.22 Wireless Regional Area Networks (WRAN). Table 2 

presents some of the key features of OFDMA-based systems. 

From Table 1 and 2 it can be noticed that QPSK, 16 QAM, and 64 QAM are the most frequent modulation 

schemes used in contemporary OFDM-based communication technologies. For that reason, these modulation 

schemes have been selected in this work for performance analyses of the ED technique impacted by NU. However, 

the results obtained can be generalized for other OFDM modulation techniques. 

 

 

 

https://en.wikipedia.org/wiki/IEEE_802.11g
https://en.wikipedia.org/wiki/LTE_Advanced
https://en.wikipedia.org/wiki/IEEE_802.16
https://en.wikipedia.org/wiki/IEEE_802.20
https://en.wikipedia.org/wiki/IEEE_802.22
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Table 3. Parameters with corresponding descriptions 

Parameter Description 

𝐻0 The hypothesis which determines the absence of the PU signal 

𝐻1 The hypothesis which determines the presence of the PU signal 

𝑦𝑖(n) The average signal received for i-th SU and for n-th sample 

𝑤𝑖(n) AWGN signal for i-th SU during n-th sample 

σ𝑛𝑖
2  The variance of AWGN for i-th SU without NU impact 

𝜎𝑛𝑢𝑖 
2  The variance of AWGN for i-th SU with NU impact 

𝜎𝑁𝑈𝑖 
2  The variance range of AWGN for i-th SU with NU impact 

ℎ𝑖(𝑛) Amplitude gain of the channel at the moment of the n-th sample 

𝑥(𝑛) Signal transmitted from PU during the n-th sample 

𝜏𝑖 Energy test statistic signal for i-th SU 

𝜆𝑖 The decision threshold signal level in the case of no noise uncertainty for i-th SU 

𝜆𝑑𝑖 Probability detection threshold in the case of no NU 

𝜆𝑓𝑎𝑖  False alarm threshold in case of no NU 

Pdi The probability of detection in case of no NU 

Pfai The probability of false alarm in case of no NU 

Pmi The probability of misdetection in case of no NU 

Pdi
NU The probability of energy detection with NU 

Pfai
NU The probability of false alarm with NU 

ρ NU factor 

𝑄 Standard Gaussian complementary cumulative distribution function (CDF) 

𝑄−1 Inverse standard Gaussian Complementary CDF 

𝑃 Average Tx signal power of PU 

N Total number of samples during sensing time without NU 

NNU Total number of samples during sensing time for NU 

𝜆𝑑𝑖
𝑁𝑈 Probability detection threshold in case of NU 

𝜆𝑓𝑎𝑖
𝑁𝑈 False alarm threshold in case of NU 

SNR Signal to Noise Ratio at the position of SU 

 

4. Spectrum sensing in the cognitive radio network  

Spectrum sensing is the basic and essential mechanism of cognitive radio to find the unused spectrum. In 

this section, an overview of ED-based spectrum sensing and cognitive radio architecture are presented. 

 

4.1. The energy detection model  

As the main process of cognitive radio, spectrum sensing enables unlicensed users to adapt to the environment 

by detecting unused spectrum portions without causing interference to the licensed network. In order to sense the 

radio frequency environment, cognitive radio (SU) takes signal samples and then performs digital signal 

processing operations that produce average received signal energy known as test statistics. In order to simplify 

problem formulation, signals used in these analyses are assumed to be real-valued, however, the analysis can be 

easily extended to complex signals. For CRN with single PU and multiple SU where noise received at the position 

of SU is assumed to be additive white Gaussian noise (AWGN), the spectrum-sensing problem can be represented 

as a binary hypothesis, mathematically expressed by [9, 58, 59]:  

 

𝐻0: 𝑦𝑖(𝑛) =  𝑤𝑖(𝑛), i = 1, …, M, n= 1,…, N if PU is absent 

(13) 

𝐻1: 𝑦𝑖(𝑛) =  ℎ𝑖(𝑛) ⨯ 𝑥(𝑛)+ 𝑤𝑖(𝑛), i = 1, …, M, n= 1,…, N if PU is present 

 

where 𝑦𝑖(𝑛) is the received signal by i-th SU during the n-th sample, 𝑤𝑖(n) is the AWGN signal received by i-th 

SU with zero mean and variance 𝜎𝑛𝑖
2  ( 𝑤𝑖(n) ∈ Ɲ (0, 𝜎𝑛𝑖

2 )), 𝑥(𝑛) is a signal transmitted from PU during the n-th 



 8 of 35 

 

sample, ℎ𝑖(𝑛) is random linear time-varying operator representing channel fading for the i-th SU at the moment 

of discrete time sample n, N is the total number of samples during sensing time and M is a total number of SUs 

[9]. It is assumed that all random processes are ergodic and stationary. In the analyses, it is also assumed that the 

primary signal x(n) is independent of the AWGN and fading. Since the spectrum-sensing time period is shorter 

than the transmission time period, it can be assumed that ℎ𝑖(𝑛) is a constant in the theoretical analyses and 

consequently in computer simulations. Table 3 lists all the parameters used in this work with corresponding 

descriptions.  

The presence or absence of a PU is usually defined by the statistical probability of PU signal detection. In 

order to evaluate ED performance, a decision threshold signal level (𝜆𝑖) is set and compared to the energy test 

statistic signal level obtained (𝜏𝑖) at the position of SU. The detection rule is defined by:  

 

𝜏𝑖 > 𝜆𝑖, PU present 

   (14) 

𝜏𝑖 < 𝜆𝑖, PU absent 

 

where the test statistic signal level (𝜏𝑖 ) is gained calculating the average received signal energy. Hence, for 

conventional ED, the average received signal energy for N samples is defined as the test statistic 𝜏𝑖 [60]:  

 

𝜏𝑖 =
1

N
 ∑|𝑦𝑖(𝑛)|

2

N

𝑛=1

 (15) 

The test statistic signal level is then compared to a predetermined threshold (𝜆𝑖) for i-th SU. The threshold 

(𝜆i) is determined from the energy of noise. The accuracy of the threshold is key to the performance of the energy 

detector. In further analyses, the threshold value is assumed to be fixed and selected based on the known noise 

level. The hypothesis 𝐻0 in relation (13) is validated if the energy of the received signal is lower than the signal 

threshold (14), thus signifying the presence of a spectrum hole. According to relation (13), the alternate hypothesis 

𝐻1 is validated if the received signal’s energy at the SU cognitive radio is greater than the set threshold (14), which 

results in the conclusion that the PU is present [7, 32, 61].  

Figure 1 shows the stages of the ED process performed by SU. The first process in the ED method is passing 

the received signal through the Band Pass Filter (BPF) to select an appropriate signal bandwidth [32]. Using the 

Analog to Digital Converters (ADCs), the analog signal is sampled to obtain a discrete signal. The digital output 

is squared, and to obtain the energy test statistic, the average of N samples is calculated based on relation (15). 

The average energy (test statistics) calculated is compared with the decision threshold (14). To determine the 

presence or absence of the PU signal, established binary hypotheses 𝐻0 and 𝐻1 presented with relation (13) are 

used.  

In essence, the performance of ED technique is based on examining the Neyman-Pearson hypotheses. In 

order to test these hypotheses, the comparison between the log-likelihood ratio of the received signal and the 

decision threshold will be [7]: 

 

𝐻1 : 𝑙𝑜𝑔 (
𝑃(𝑦0, 𝑦1,…………,𝑦(N−1)| 𝐻1)

𝑃(𝑦0, 𝑦1,…………,𝑦(N−1)| 𝐻0)
) > 𝜆𝑖 (16) 

𝐻0 : 𝑙𝑜𝑔 (
𝑃(𝑦0, 𝑦1,…………,𝑦(N−1)| 𝐻1)

𝑃(𝑦0, 𝑦1,…………,𝑦(N−1)| 𝐻0)
) < 𝜆𝑖 (17) 

 

where 𝑃(𝑦| 𝐻0) and 𝑃(𝑦| 𝐻1) represent the probability density functions (PDFs) of the null hypothesis 𝐻0 and 

alternative hypothesis 𝐻1.  

Non-central chi-squared distribution with N degrees of freedom is used for expressing the presence of the 

PU signal (𝜏𝑖(𝑛) > 𝜆𝑖). In the case of PU signal absence (𝜏𝑖(𝑛) < 𝜆𝑖), central chi-squared distribution with N 

degrees of freedom is used, where N represents a number of samples used in the ED process. When the ED 

observation interval (N) is large enough, the PDF of the received signal can be approximated as Gaussian 

distribution, where f (𝜏𝑖(𝑛)) is PDF of 𝜏𝑖(𝑛). If the noise variance is known and there is no NU, the central limit 

theorem gives the following approximations of the test statistics PDF [58, 61]:  
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f (𝝉𝒊(𝒏)) ~ Ɲ (𝝈𝒏𝒊 
𝟐 ,

𝟐

𝑵
𝝈𝒏𝒊 
𝟒 ) (under 𝑯𝟎) 

f (𝝉𝒊(𝒏)) ~ Ɲ (𝑷 + 𝝈𝒏𝒊 
𝟐 ,

𝟐

𝑵
(𝑷 + 𝝈𝒏𝒊 

𝟐 )𝟐) (under 𝑯𝟏) 

(18) 

where 𝑃 = ∑
|𝑥(𝑛)|2

N

N
𝑛=1  is the average signal power of PU and 𝜎𝑛

2 is noise variance. The probability of detection 

(Pdi) and the probability of a false alarm (Pfai) can be expressed as [58, 60, 61] 

Pdi = 𝑄

(

 
 λ𝑑𝑖 − (P + 𝜎𝑛𝑖 

2 )

√2
N
(𝑃 + 𝜎𝑛𝑖 

2  ) )

  (19) 

Pfai = 𝑄

(

 
 λ𝑓𝑎𝑖 − 𝜎𝑛𝑖 

2

√2
N
𝜎𝑛𝑖 
2  )

  (20) 

respectively, where Q (.) is the standard Gaussian complementary cumulative distribution function (CDF) [60]. 

The probability of detection (Pdi) is the probability that the SU correctly declares that a PU is present, when the 

PU is really present. The probability of a false alarm (Pfai) is the probability that SU incorrectly declares that a PU 

is present when the PU is actually absent. Both parameters are commonly used to express the efficiency of the ED 

process. In addition to those probabilities, the probability of misdetection (Pmi) presents the probability that PU is 

actually present while SU declares that it is absent. The misdetection probability (Pmi) for i –th SU can be written 

as:  

 

Pmi = 1 − Pdi (21) 

  
And a lower probability of misdetection (or higher probability of detection) is favourable since it offers better 

chances for accurate detection of PU signal at the position of SU.  

4.2. Spectrum-sensing model without noise uncertainty  

Previous analyses of the spectrum-sensing model are based on the assumption that exact information about 

noise power is accurately known at the position of SU. This model excludes any fluctuations of noise also known 

as noise uncertainty (NU) during the ED process. A method based on an adaptive inverse cumulative density 

function (ICDF) is used in this work to determine the ED threshold for the spectrum-sensing model presented. 

This method is based on the adaptive and fixed thresholding approach. In the adaptive ICDF method, the threshold 

is a function of the probability of false alarm (Pfai) [7]. Based on (19) and (20), for hypothesis 𝐻1 and for a constant 

value of the probability of detection (Pdi), the probability detection threshold (𝜆𝑑𝑖) for the ED process without NU 

is derived as [58, 60, 61]:  

𝜆𝑑𝑖 = 𝑄
−1(Pdi)(𝑃 + 𝜎𝑛𝑖 

2  )√
2

N
+ (𝑃 + 𝜎𝑛𝑖 

2 ) (22) 

where Q−1  (.) is the inverse standard Gaussian Complementary CDF. For a fixed Pfai  value, the false alarm 

threshold (𝜆𝑓𝑎𝑖) for the case without NU is given by [59-61]: 

𝜆𝑓𝑎𝑖 = 𝑄
−1(Pfai)𝜎𝑛𝑖 

2 √
2

N
+ 𝜎𝑛𝑖 

2  (23) 

Equations (22) and (23) indicate that threshold estimation depends on the noise variance (𝜎𝑛𝑖 
2 ), the average PU 

signal power (P), the number of the samples (N) and the required detection (Pdi) or false alarm probability (Pfai). 
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Since SNR at the position of SU is impacted by average signal PU power and noise variance, SNR can be expressed 

as: SNR = P/𝜎𝑛𝑖 
2 . 

Hence, a minimal overall number of samples (N) during ED sensing time for accurate PU detection can be 

expressed in terms of Pfai, Pdi and SNR [60, 61] as:  

N =
2[𝑄−1(Pfai) −  𝑄

−1(Pdi  )(1 + SNR)]
2

SNR2
 (24) 

 

showing that signal detection could be achieved at arbitrarily low SNRs by increasing the sensing time (number 

of samples N) if perfect knowledge of noise power 𝜎𝑛
2 exists. It can be noticed that the expression (24) is free 

from the decision threshold. Thus, a greater number of samples results in a higher probability of detection during 

the ED process, regardless of the threshold set. Relation (24) defines the minimum number of samples in the ED 

process in order to achieve ED for a specific combination of Pfai, Pdi and SNR. It is obvious that the performance 

will gradually improve as N increases. In addition, accurate PU detection probability can be obtained even if the 

SNR is lower, if N is large enough, and NU is absent. Therefore, a weak signal without NU can be detected by 

means of the ED technique, if an appropriate number of samples is used [29].  

Interdependence between the Pdi and Pfai is developed from relation (24), and it is expressed as 

Pdi = 𝑄

(

 
𝑄−1(Pfai) − √

N
2
 SNR

1 + SNR

)

  (25) 

 

where the parameters having the main impact on PU signal detection are the probability of false alarm (Pfai), SNR 

level and the number of samples (N).  

 

 

5. Energy detection with noise uncertainty  

The previous section presents the fundamental analyses of the ED technique. The analyses assumed that noise 

power detected by SU is exactly known. Mostly in practice, it is not possible to obtain exact information about 

noise power which changes randomly in space and time. For that reason, SU often experiences the uncertainty in 

the noise power estimation (detection) which is known as NU [29, 61]. Assuming the NU does not exist poses a 

limitation on the ED performance of the given cognitive radio system. Hence, not taking noise power uncertainty 

into account means avoiding realistic conditions in the network. To have a more realistic performance estimate, 

the ED system model is extended by taking into account the NU impact on the overall ED process. Hence, in this 

section, a derived mathematical model is provided to show the influence of the NU on ED system performance.  

 

5.1. Spectrum-sensing model with noise uncertainty 

NU is the result of noise power fluctuation. Fluctuation in noise power causes a drop in the quality of sensing 

sensitivity. As a consequence of this phenomena, the detection accuracy drops quickly which can result in a wrong 

decision of SU and entry of SU in transmission state causing SU interference to the PU [61]. NU imposes a limit 

on the capability of detecting weak signals. Energy detector performance cannot be improved by increasing the 

sensitivity when the SNR of PU signals is below a certain level known as SNR-wall (SNRwall). Below the SNR-

wall, no matter how much time the primary signal is observed, the energy detection becomes unreliable or even 

impossible [7].  

In the case when NU impacts the ED process, AWGN power distribution is also assumed to be zero mean 

with variance 𝜎𝑛𝑢𝑖
2  (  𝑤𝑖 (n) ∈ Ɲ (0, 𝜎𝑛𝑢𝑖 

2 )). Additionally, the impact of the noise power uncertainty can be 

expressed with NU factor ρ (ρ≥1). When factor ρ=1, there is no NU and there is no variation in the noise power. 

This case was defined in the previous section. A case where factor ρ>1 implies there is NU and higher values of  
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Table 4. Upper and lower noise variances, NU deviations and SNR walls for different test scenarios 

 

ρ imply higher NU. For example, if NU factor is ρ =1.01, this means that the noise power fluctuations are in order 

of 1% of the received absolute noise power variance level 𝜎𝑛𝑢𝑖
2 . 

Hence, the limits of noise variance (𝜎𝑁𝑈𝑖 
2 ) of AWGN impacted with NU can be expressed in a single interval 

𝜎𝑁𝑈𝑖 
2 𝜖[

𝜎𝑛𝑢𝑖 
2

ρ⁄ , ρ𝜎𝑛𝑢𝑖 
2 ]. For that reason the 𝜎𝑛𝑖 

2  in (19) and (20) would be replaced by these limiting values and 

the expressions for the probability of detection (Pdi) and the probability of false alarm (Pfai) for a scenario which 

includes NU are modified as [60, 61]:  

Pdi
NU  = 𝑚𝑖𝑛

𝜎𝑁𝑈𝑖 
2 𝜖[

𝜎𝑛𝑢𝑖 
2

ρ
⁄ ,ρ𝜎𝑛𝑢𝑖 

2 ].

𝑄

(

 
𝜆𝑖 − (𝑃 + 𝜎𝑁𝑈𝑖 

2 )

√
2
NNU

(𝑃 + 𝜎𝑁𝑈𝑖 
2  ))

 =Q

(

 
𝜆𝑑𝑖
𝑁𝑈 − (𝑃 +

𝜎𝑛𝑢𝑖 
2

ρ
)

√
2
NNU

(𝑃 +
𝜎𝑛𝑢𝑖 
2

ρ
 ))

  (26) 

 

Pfai
NU  = 𝑚𝑎𝑥

𝜎𝑁𝑈𝑖 
2 𝜖[

𝜎𝑛𝑢𝑖 
2

ρ
⁄ ,ρ𝜎𝑛𝑢𝑖 

2 ].

𝑄

(

 
𝜆𝑖 − 𝜎𝑁𝑈𝑖 

2

√
2
NNU

𝜎𝑁𝑈𝑖 
2  )

 =  Q

(

 
𝜆𝑓𝑎𝑖
𝑁𝑈 − ρ𝜎𝑛𝑢𝑖 

2

√
2
NNU

ρ𝜎𝑛𝑢𝑖 
2  )

  (27) 

In relations (26) and (27), 𝑃𝑑𝑖
𝑁𝑈  represents the probability of PU energy detection, while 𝑃𝑓𝑎𝑖

𝑁𝑈  represents the 

probability of false alarm for the case of reception of PU signal impacted by NU. Besides the Tx power of PU 

signal (P), the number of samples (N) and variance impacted with NU (ρ, 𝜎𝑁𝑈𝑖 
2 ), relations (26) and (27) indicate 

that the probability of detection threshold 𝜆𝑑𝑖
𝑁𝑈 and the probability of false alarm threshold 𝜆𝑓𝑎𝑖

𝑁𝑈  affect  𝑃𝑑𝑖
𝑁𝑈 and 

𝑃𝑓𝑎𝑖
𝑁𝑈, respectively.  

For a constant value of 𝑃𝑑𝑖
𝑁𝑈, the probability of detection threshold in case of NU (𝜆𝑑𝑖

𝑁𝑈) can be derived from 

(26) and expressed as: 

𝜆𝑑𝑖
𝑁𝑈 = 𝑄−1(Pdi

NU) (𝑃 +
𝜎𝑛𝑢𝑖 
2

ρ
)√

2

NNU
+ (𝑃 + 𝜎𝑛𝑢𝑖 

2 /ρ)        (28) 

 

Similarly, the probability of the false alarm threshold in case of NU for a constant value of Pfai
NU can be 

derived from (27) and expressed as: 

𝜆𝑓𝑎𝑖
𝑁𝑈 = 𝑄−1(Pfai

NU)𝜎𝑛𝑢𝑖 
2 √

2

NNU
+ 𝜎𝑛𝑢𝑖 

2  ρ (29) 

 

A number of samples for performing ED when PU signal is impacted by NU [29] can be obtained by modifying 

equation (24) as follows: 

NNU =
2 [ρ𝑄−1(Pfai

NU) − (
1
ρ
+ SNR)𝑄−1(Pdi

NU)]
2

[SNR – (
 ρ2 − 1
 ρ

)]
2  (30) 

Scenario No. NU parameter σ𝑙𝑛𝑢𝑖
2  σ𝑢𝑛𝑢𝑖

2  ∆𝑛𝑢𝑖 (dB) 𝑆𝑁𝑅𝑤𝑎𝑙𝑙 𝑆𝑁𝑅𝑤𝑎𝑙𝑙  (𝑑𝐵) 

1. σ𝑛𝑖
2 = 1.00, ρ= 1.00 1.00 1.00 0 0 N/A 

2. 𝜎𝑁𝑈𝑖 
2 = 1.01, ρ= 1.01 1.00 1.0201 0.04321 0,0199 -17.011 

3. 𝜎𝑁𝑈𝑖 
2 = 1.01, ρ= 1.02 0.9901 1.0302 0.086 0.0396 -14.023 

4. 𝜎𝑁𝑈𝑖 
2 = 1.01, ρ= 1.03 0.9805 1.0403 0.1283 0.05912 -12.2826 

5. 𝜎𝑁𝑈𝑖 
2 = 1.01, ρ= 1.05 0.9619 1.0605 0.2118 0.0976 -10.105 
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where NNU represents the minimal number of samples needed for an accurate detection of the PU signal in the 

presence of NU during the ED process. Relation (30) confirms that the energy detector cannot detect the signal if 

its power is less than 
ρ2−1

 ρ
 of the uncertainty in the noise power, i.e. 𝑃 ≤ SNRwall = (

 ρ2−1

 ρ
)𝜎𝑛𝑢𝑖 

2 . Hence, if the 

noise has a slightly larger value than the signal, the presence of the signal is indistinguishable from the noise.  

By scaling the NU factor, the impact of NU can be included in the calculation of the sampling number. For 

the case when ρ =1 and 𝜎𝑛𝑖
2 = 𝜎𝑛𝑢𝑖 

2 , relations (30) and (24) become equal if Pdi = Pdi
NU and Pfai = Pfai

NU. However, 

when ρ is larger (i.e. ρ>1.05) or 𝜎𝑛𝑖
2 ≤ 𝜎𝑛𝑢𝑖 

2  and for low SNR values, to have accurate detection the number of 

samples must vastly increase (N → ∞) what means that the detection duration must be extremely long. This is 

impossible to realize in practice, especially in the low SNR environment. In other words, cognitive performance 

is greatly influenced by the NU level (ρ), SNR and detection duration (N) [60]. For different values of the NU 

factor (ρ), the relation between Pdi and Pdi
NU is expressed as: Pdi = Pdi

NU if N = NNU, 𝜎𝑛𝑖
2 = 𝜎𝑛𝑢𝑖 

2  and ρ = 1.00 

or Pdi > Pdi
NU if N = NNU, 𝜎𝑛𝑖

2 ≤ 𝜎𝑛𝑢𝑖 
2 and ρ > 1.00 . Hence, when there is no NU (ρ = 1.00 and 𝜎𝑛𝑖

2 = 𝜎𝑛𝑢𝑖 
2 ), the 

probabilities Pdi and Pdi
NU are the same. When ρ >1.00 and/or 𝜎𝑛𝑖

2 ≤ 𝜎𝑛𝑢𝑖 
2 , the probability of detection Pdi and 

Pdi
NU differ since NU impacts the probability of energy detection Pdi

NU.  

The interdependence between Pdi
NU and Pfai

NU is derived from (30), and can be expressed as:  

 

Pdi
NU = 𝑄(

ρQ−1(Pfai
NU)−(SNR – 

ρ−1

 ρ
)√
NNU

2
1

ρ
+SNR

)  (31) 

Unlike relation (25), relation (31) takes into account NU through NU factor ρ which enables (in relation (31)) 

modeling of NU impact on the probability of detection.  

 

 

5.2 Estimation of noise uncertainty 

The introduction part of Section 5 emphasized that the noise power level may vary over time which causes 

the NU problem. The NU can be categorized into two types: environmental and receiver device NU. The 

environmental NU component is caused by intentional or unintentional transmissions of neighbour users. Time-

varying thermal noise in receiver components and the nonlinearity of receiver components cause the NU at the 

receiver device [62]. Although the receiver device NU component is slower in variations than the environmental 

NU component, in practice, it is very difficult to obtain an accurate noise power which must be estimated. In this 

analysis, NU estimation is based on the distribution of the uncertainty of the noise power within the interval 

𝜎𝑁𝑈𝑖 
2 𝜖 [𝜎𝑙𝑛𝑢𝑖 

2 =
𝜎𝑛𝑢𝑖 
2

ρ⁄ , 𝜎𝑢𝑛𝑢𝑖=
2 ρ𝜎𝑛𝑢𝑖 

2 ], where the lower and upper bounds of the NU variance interval are given 

as  

σ𝑙𝑛𝑢𝑖
2 = σ𝑛𝑢𝑖

2 · 10(−∆𝑛𝑢𝑖/10) =
1

𝜌
· σ𝑛𝑢𝑖

2           (32) 

σ𝑢𝑛𝑢𝑖
2 = σ𝑛𝑢𝑖

2 · 10(+∆𝑛𝑢𝑖/10) = ρ · σ𝑛𝑢𝑖
2           (33) 

 

and ∆𝑛𝑢𝑖=10log10ρ corresponds to the deviation of noise variance around nominal value (𝜎𝑛𝑢𝑖 
2 ) expressed in dB 

for i-th SU. This NU model is further used in the analyses to quantify the impact of NU on the performance of the 

ED process. The upper bound on ρ is defined as +∆𝑛𝑢𝑖=sup{10log10ρ}, where +∆𝑛𝑢𝑖  represents upper NU 

bound of the uniformly distributed interval [-∆𝑛𝑢𝑖, +∆𝑛𝑢𝑖] and −∆𝑛𝑢𝑖=inf{10log10(
1

ρ
)} represents the lower NU 

bound. If no environmental NU is assumed, the NU deviation of a receiving device in practice is generally less 

than ±1 dB (e.g. [−1 dB, 1 dB]) [62, 63]. However, in practice, the environmental NU caused by the interference  
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Algorithm 1: Generation of OFDM signals  

1: Input 1: modulation order m (QPSK, 16 QAM, 64 QAM), number of samples (N), size of each ofdm block (block_size), 

points for the FFT/IFFT (no_of_fft_points/ no_of_ifft_points), length of cyclic prefix (cp_len), reference constellation 

(refconst), normalization type (type) and target power (power) 

3: Output: OFDM signal (ofdm_signal) 

4: Initialize: OFDM signal  

Step 1: Generate vector of random data points for M-PSK or M-QAM modulation 

5:   data_source= randsrc(1, N, 0:m-1);  

6:   qpsk(qam)_modulated_data = psk(qam)mod(data_source, m);  

7:   normfactor = modnorm(refconst,type,power);  

8:   Tx= normfactor*psk(qam)mod(data_source, m); 

Step 2: Perform IFFT on each block 

9:    num_cols=length(qpsk(qam)_modulated_data)/block_size;  

10:    data_matrix = reshape(Tx, block_size, num_cols); 

11:    cp_start = block_size-cp_len; 

12:    cp_end = block_size; 

13:    for i=1:num_cols, 

14:    ifft_data_matrix(:,i) = ifft((data_matrix(:,i)),no_of_ifft_points); 

Step 3: Compute Cyclic Prefix and append it to the actual OFDM block 

15:    for j=1:cp_len, 

16:    actual_cp(j,i) = ifft_data_matrix(j+cp_start,i); 

17: end 

18:     ifft_data(:,i) = vertcat(actual_cp(:,i),ifft_data_matrix(:,i)); 

19:   end 

Step 4: Convert to serial stream for transmission 

20:  [rows_ifft_data cols_ifft_data]=size(ifft_data);  

21:   len_ofdm_data = rows_ifft_data*cols_ifft_data; 

 Step 5: Actual OFDM signal to be transmitted  

22:   ofdm_signal = reshape(ifft_data, 1, len_ofdm_data);  

 

of neighboring users can contribute to a significant increase in NU bound and deviation. 

In order to analyze the ED of different OFDM system designs under such an NU model, five different test 

scenarios presented in Table 4 are taken into consideration. The test scenarios are based on different combinations 

of nominal noise variances (𝜎𝑛𝑖 
2  or 𝜎𝑁𝑈𝑖 ) 

2 and NU factors (ρ = 1.0, 1.01, 1.02, 1.03, 1.05). In order to have test 

scenarios that are as realistic as possible, two different nominal noise variances are selected (σ𝑛𝑖
2 , σ𝑛𝑢𝑖

2 ), each 

corresponding to a practical scenario characterising the absence or presence of NU, respectively. Also, the NU 

factors selected for the analyses (Table 4) correspond to realistic noise variance deviations characteristic for OFDM 

communication systems lacking a strong impact of environmental NU. For a specific test scenario, theoretical 

SNRwall in real ( SNRwall = (
 ρ2−1

 ρ
)𝜎𝑛𝑢𝑖 

2 ) and logarithmic ( SNRwall(𝑑𝐵) = 10log10SNRwall ) scale are also 

presented in Table 4, showing the values characteristic to the ED method.  
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Algorithm 2: Simulation of the ED process  

1: Input 1: OFDM signal (ofdm_signal), len_ofdm_data, number of samples (N), SNR, NU factor (ρ), noise variance (𝜎𝑛𝑖
2 ), 

length of Pfai and the number of Monte Carlo simulations (kk) 

3: Output: Probability of detection (Pdi) 

4: On initialized OFDM signal (ofdm_signal) do: 

 Repeat 

Step 1: Simulation Probability of Detection vs. Probability of False Alarm  

5:  set kk = number of Monte Carlo simulations  

6:  set Pfa=probability of false alarm 

7:  for p = 1:length(Pfai); 

8:  i1=0; i2=0;  

9:  for kk=1:10000; 

Step 2: Generate AWGN noise with zero mean and variance  

10:  Noise_1 (ρ=1.00)= sqrt(𝜎𝑛𝑖
2 ).*randn (1, len_ofdm_data);  

11:  Noise_2 (ρ>1.00)= sqrt(𝜎𝑛𝑢𝑖
2 ).*randn (1, len_ofdm_data);  

 Step 3: Generate PU signal and Received signal with noise calculation 

12:  final_ofdm_signal = sqrt(SNR).*ofdm_signal; 

13:  received_signal_1 = final_ofdm_signal + Noise_1; 

14:   received_signal_2 = final_ofdm_signal + Noise_2 

  Step 4: Received signal energy calculation  

15:  energy_calc_1 = abs(received_signal_1).^2;  

16:  energy_calc_2 = abs(received_signal_2).^2; 

  Step 5: Test statistic calculation using (15) 

17:  test_stat_1 =(1/N).*sum(energy_calc_1);     

18:  test_stat_2 =(1/N).*sum(energy_calc_2); 

  Step 6: Threshold evaluation using (23) and (29) 

19:  thresh1(p) = (qfuncinv(𝑃𝑓𝑎𝑖(p))./sqrt(N))+ 1;    

20:  thresh2(p) = (qfuncinv(𝑃𝑓𝑎𝑖(p)).* 𝜌./sqrt(N))+ 𝜌;  

 Step 7: Decision making using (14) 

21:   if (test_stat_1 >= thresh1(p));  

22: i1 = i1+1; 

23:    end   

24:    if (test_stat_2 >= thresh2(p));  

25:  i2 = i2 + 1; 

26:   end    

27: end   

 Step 8: Monte Carlo simulation to determine Pdi using (13) 

28:    Pdi1(p) = i/kk; 

29:     Pdi2(p) = i2/kk;      

30:  end  

31: Until Pdi= [0, 1] 
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Table 5. Simulation parameters 

Parameter Value/Type 

PU signal OFDM 

Modulation type QPSK, 16 QAM and 64 QAM 

Channel noise type AWGN 

Number of samples/FFT size (samples) 128, 256, 512, 1024 

SNR ratio (dB) -25 to 10 

The probability of detection/false alarm [0, 1] 

Number of Monte-Carlo iterations 10,000 

Noise variance 𝜎𝑛𝑖
2  for signals without NU (ρ=1.00) 1.00 

Noise variance 𝜎𝑛𝑢𝑖
2  for signals with NU (ρ>1.00)  1.01 

NU factor ρ 1.00, 1.01, 1.02, 1.03, 1.05 

6. The Energy Detection Algorithms 

Algorithms for simulating spectrum sensing based on the ED concept are developed and presented in this 

section. To model the spectrum sensing algorithm, the MATLAB software is used. This approach is selected 

because it represents an appropriate statistical analysis tool which can be applied to simulate the ED process [8, 

64]. In order to model the impact of NU on the ED process of the OFDM signals, Algorithm 1 and Algorithm 2 

have been developed. 

Based on Algorithm 1, different OFDM modulated signals have been generated. The first line of Algorithm 

1 presents the setup of input parameters used for the generation of OFDM signals. The values such as: modulation 

order m (QPSK, 16 QAM, 64 QAM), number of samples (N), size of each ofdm block (block_size), points for the 

Fast Fourier Transform FFT/ Inverse FFT (no_of_fft_points/ no_of_ifft_points), length of cyclic prefix (cp_len), 

reference constellation (refconst), normalization type (type) and target Tx power (power) are set. In lines 5-8, 

generating a vector of random data points for m-PSK or m-QAM modulation and setting the scaling factor for 

normalizing modulation Tx power output is performed. Lines 9-14 of Algorithm 1 present the generation of IFFT 

on each block of OFDM signal. From lines 15 to 19, Cyclic Prefix (CP) is computed and appended to the actual 

OFDM block. The generation of the OFDM signal (ofdm_signal) is modeled in lines 20-22 of Algorithm 1. 

After generating the specific OFDM signal, Algorithm 2 is used for spectrum-sensing simulation of the PU 

signals in the ED process with and without NU impact. The first line of Algorithm 2 presents the setup of input 

parameters used for the simulation of the ED process. The values such as OFDM signal (ofdm_signal) generated 

by Algorithm 1, len_ofdm_data (presents length of OFDM data after parallel-to-serial conversion), SNR range, 

NU factor, noise variance (𝜎𝑛𝑖
2 ), length of the probability of false alarm (Pfai) and the number of Monte Carlo 

simulations (kk) are set. Monte-Carlo simulations are used to improve the accuracy of the simulation process. 

Hence, in lines 5 to 10 of Algorithm 2, the parameters for performing Monte-Carlo simulation, such as length of 

Pfai and a number of Monte Carlo simulations are set and executed.  

Lines 11 to 12 show part of the pseudo-code for generating AWGN with zero mean and variance which 

differs for signals without (σ𝑛𝑖
2 = 1.00) and with NU impact (σ𝑛𝑢𝑖

2 = 1.01). The variance of AWGN signal 

without NU (σ𝑛𝑖
2 = 1.00) is expressed with NU factor ρ =1.00, while the variance of AWGN noise with NU is 

set to a predefined level (𝜎𝑛𝑢𝑖 
2 = 1.01) with NU factor ρ >1. The AWGN signal is generated using a Matlab 

random number generator function (randn) in which all the samples follow Gaussian distribution.  

In line 13, the final OFDM signal (final_ofdm_signal) is generated by multiplying the values of the OFDM 

signal and the linear values of SNR. Two types of received signal are shown in lines 14-15. The first one 

(Received_signal_1) presents a OFDM signal with a noise variance (𝜎𝑛𝑖
2 ) not impacted by NU, while the second 

one (Received_signal_2) presents a OFDM signal with a noise variance (𝜎𝑁𝑈𝑖 )
2 impacted by NU.  

Lines 16 – 17 of the Algorithm 2 show how the received signal energy for the case without and with NU 

impact, (energy_calc_1 and energy_calc_2, respectively) is calculated. 
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In lines 18 – 19, the average signal received for N samples is defined as test statistics calculation for two 

cases: test statistics for signals without NU impact (test_stat_1) and for signals with NU impact (test_stat_2). 

Calculating the averaged received signal is performed according to relation (15).  

Lines 20 – 21 present threshold evaluations of the received signal. Thresh1(p) presents the first case where 

there is no NU (ρ =1.00), while Thresh2(p) presents the second case with NU. Mathematical expressions of the 

first and second cases are given with relations (23) and (29), respectively.  

The decision-making process is presented in lines 22 - 27 of Algorithm 1. For each of the cases analyzed, the 

threshold comparison is made with corresponding test statistics: test_stat_1 and test_stat_2. If the test statistic is 

higher or equal to the threshold, PU is present and hypothesis 𝐻1 is validated as indicated in relation (13). If the 

test statistic is lower than the threshold, PU is absent and hypothesis 𝐻0 is validated according to relation (13).  

In lines 28 – 32, in order to determine the probability of PU signal detection Pdi, Monte Carlo iterations are 

used to get the most realistic results for all the cases analyzed. 

 

7. Simulation Results 

In this section, the parameters used in simulations and an overview of simulation results are presented. 

Spectrum sensing based on the ED technique at the location of SU is simulated for the three types of OFDM system 

designs (RA, MA and joint RA and MA OFDM systems). The differences among the PU signals received are 

simulated through the impact of NU on the received signal. This enables studying the impact of NU on ED 

capabilities of differently modulated OFDM signals. 

7.1. Simulation Software and Parameters 

Matlab simulation toolbox (version R2016a) was used to generate OFDM signal based on Algorithm 1 and 

to model the ED process based on Algorithm 2. Three types of OFDM modulations are used in the simulations: 

QPSK, 16 QAM and 64 QAM. Those modulation types are the most frequently used in practical OFDM-based 

systems, as shown in the analyses presented in Section 3.2. A summary of the parameter values used for the 

simulation of ED process for the OFDM system designs analysed is shown in Table 5. As indicated in Table 5, 

different FFT sizes (128, 256, 512 and 1024) of OFDM signals are used for analyses. The analyses are performed 

for SNR of received PU signals in the range between – 25 dB and 10 dB. It is reasonable to believe that the selected 

SNR range offers the possibility of signal detection in practical scenarios for many communication technologies 

which use the OFDM technique. The probabilities of signal detection (Pdi) and false alarm (Pfai) are analyzed for 

the range between 0 and 100%. The results are obtained for 10,000 Monte Carlo simulations (Table 5). The selected 

numbers of Monte-Carlo simulations are based on the trade-off between simulation accuracy and the duration of 

the simulation. To model the impact of NU on the received OFDM signal during the ED process, different values 

of the NU factor are used (Tables 4 and 5). To exclude the impact of NU in the model, an NU factor ρ equal to 1 

is used (Tables 4 and 5). To simulate the ED of a more realistic PU signal, the NU factors between 1.01 and 1.05 

are used (Tables 4 and 5). The selection of such NU factors implies variations of noise between 1% and 5% of 

AWGN, which is common in practice. 

The interdependence between the probability of PU signal detection (Pdi) and the false alarm probability 

(Pfai) has been commonly expressed by means of receiver operating characteristic (ROC) curves [7, 33]. The ROC 

curve concept, as a useful approach in evaluating and comparing PU signal detection efficiency, is used in the next 

sections to present \the simulation results obtained.  

 

7.2. The effect of noise uncertainty on the energy detection process 

The influence of the NU on the ED of RA OFDM systems is studied first and the results are presented in 

Figure 2. The results were obtained for a fixed number of samples (N=128), fixed Tx power of PU and different 

levels of NU factors expressing the intensity impact of AWGN variations on the ED of OFDM signals. Figure 2 

presents the results obtained in the form of the ROC curves for different values of SNRs and m-PSK/m-QAM 

constellation orders at the position of SU. 
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Figure 2. ROC curves for RA OFDM systems based on m-PSK/m-QAM modulations impacted by different 

values of NUs in the case of two different SNR levels  

 

According to Figure 2, the probability of detection (Pdi) is the same for any m-PSK or m-QAM modulation. 

This means that the probability of detection is independent of the modulation (constellation) order (m) for m-PSK 

or m-QAM OFDM systems transmitting with fixed Tx power (RA systems). This is because the PU in such systems 

always transmits with the same Tx power and the energy of the signal received during the ED process at the 

location of the SU can only be impacted by noise fluctuation. This is confirmed in Figure 2, indicating that for the 

same Tx power of PU, SNR and number of samples, higher noise variations have a negative impact on the 

probability of detection (Pdi). Hence in RA OFDM systems, a dynamic adjustment of the modulation order during 

transmission with fixed Tx power does not have an impact on the probability of PU signal detection in ED OFDM 

systems. 

Further analyses in terms of the impact of NU on ED of joint RA and MA OFDM based systems have been 

performed and presented in Figure 3. The results are obtained for a fixed number of samples (N=128), fixed SNR 

(min. -15 dB) at the position of SU and for the three most frequently used OFDM modulations: QPSK, 16-QAM 

and 64-QAM. Figure 3 presents the results obtained in the form of the ROC curves for different values of NU 

factors and different levels of PU Tx powers and corresponding modulations. The selected values of the Tx power 

are characteristic for OFDM-based commutation systems such as WLAN (100 mW) or 2G/3G/4G cellular mobile 

systems (1 W and 10 W). 

According to Figures 3(a) – (c), for ED of signals impacted by an equal NU variation and for the same SNR 

and number of samples N, the probability of detection will be lower when PU transmits with lower Tx power and 

vice versa. This is because higher Tx power means higher energy at the position of SU, which consequently results 

in a higher probability of signal detection. Also, from Figure 3(c) we can notice that the signals transmitted with 

higher Tx power (10 W) and impacted by higher NU (ρ = 1.05) can achieve a lower probability of detection 

(Figure3a) than those transmitted with lower Tx power (100 mW) impacted by the lower NU factor (ρ = 1.01). 

This further confirms the impact of NU on the ED process in the case of the bit and power loading (RA and MA) 

OFDM-based systems which adjusts Tx power and the constellation order during operation. 

According to the results presented in Figure 3, in order to preserve the QoS, RA and/or MA OFDM systems 

change modulation constellation and/or Tx power, respectively. To achieve the equal SNR at the position of SU, 

the signals modulated with a higher constellation order are generally transmitted with higher Tx power and vice 

versa (Figure 3c). For example, to achieve a specific SNR equal to -15 dB (Figure 3), different Tx powers with 

corresponding modulations can be used in channels impacted by different noise levels at the position of SU. For 

channels with higher noise, higher Tx power with a higher constellation order can achieve equal SNR as in the 

case of channels impacted by low noise where the lower Tx power with lower OFDM constellation can be used 

(Figure 3). Hence, modulation constellation does not have a direct impact on the probability of detection of joint 

RA and MA systems. However, the results presented in Figure 3 show that the increase of PU Tx power for the 

same modulation constellation is followed by the increase in  the probability of detection (Pdi) for the case of 

equal channel conditions (same SNR and NU factor). Hence, the OFDM modulation constellation has an indirect  
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(a)            (b) 

 
(c)       

Figure 3. ROC curves for joint RA and MA OFDM systems impacted by different values of NU factors and 

transmitted with: (a) Tx power of 0.1 W and QPSK modulation; (b) Tx power of 1 W and 16-QAM modulation; 

(c) Tx power of 10 W and 64-QAM modulation 

  

Figure 4. ROC curves for MA systems impacted by equal NUs for different Tx powers and OFDM modulations 

 

impact on the probability of detection, since achieving equal SNR for modulations with higher constellation must 

be followed by higher Tx power and higher Tx power results in a better probability of detection (Pdi). 

Additional analyses for MA OFDM systems have been performed with signals impacted by the fixed NU 

variation (ρ =1.01). The results are presented in Figure 4, where it is assumed that each OFDM modulation  
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(a)            (b) 

Figure 5. (a) SNR vs. probability of detection for OFDM signals impacted by different NUs in RA systems; (b) 

ROC curves for different values of SNR for an RA OFDM system transmitting signals modulated with m-

PSK/m-QAM modulations and impacted by two different NU factors 

 

(QPSK, 16QAM, 64QAM) for specific Tx power (100 mW or 10 W) can achieve SNR of -15 dB or better. 

According to the results presented, the MA systems transmitting with the same OFDM modulation, but with 

different Tx powers will have different probabilities of detection. 

A higher probability of detection for the same false alarm probability will have an OFDM modulation 

transmitted with higher Tx power. This means that Tx power adjustment in MA systems significantly impacts the 

probability of detection, even when there is an impact of NU variation (Figure 4).  

 

7.3. The effect of signal-to-noise ratio on the energy detection process 

Further simulations related to the impact of SNR at the position of SU on the ED process have been 

performed. The results obtained, presented in Figure 5(a), show the impact of SNR at the position of SU on the 

probability of signal detection (Pdi) for RA OFDM systems. As explained in the previous section, for the fixed Tx 

power of PU (1 W) and some fixed value of the probability of false alarm (Pfai= 10%), the probability of detection 

(Figure 5a) will be the same for any modulation and corresponding constellation (m-QAM/m-PSK modulation). 

However, the simulation results presented in Figure 5(a) show that for lower values of SNR, the probability of 

detection will be low (less than 30%) for every modulation constellation and will increase with the improvement 

of SNR. This is expected since lower SNR means lower energy of PU signal at the position of SU, which 

diminishes accurate signal detection and consequently lowers the probability of detection.  

Additionally, for the signals with the same SNR which are more impacted by NU, the probability of detection 

will be further degraded due to the higher impact of NU in AWGN which consequently lowers the overall SNR 

during the ED process (Figure 5(a)). Also, Figure 5(b) presents ROC curves for different values of SNR (-25 dB/-

10 dB/-5dB) and fixed PU Tx power (1 W) of OFDM signals modulated with m-PSK/m-QAM modulations and 

impacted by different NUs. According to the results, for noisy channels (having low SNR at the position of SU), 

the probability of detection will be lower due to the negative impact of the noise in the ED process. This means 

that for RA OFDM systems, independently of NU, the overall level of noise (AWGN) has a dominant impact on 

the ED process and higher noise levels can significantly degrade ED performance. This is because a higher SNR 

for the same Tx power of PU means less noise at the position of the SU user, which consequently results in a 

higher probability of detection. Besides the dominant impact of the overall level of AWGN, Figure 5(b) further 

confirms the non-negligible impact of NU which additionally contributes to ED performance. Figure 5(b) shows 

that for higher NUs, the probability of detection will be lower for signals with lower SNR. This means that the 

combination of low SNR with high NU negatively impacts on the ED performance of RA OFDM system. 

For joint RA and MA OFDM systems, the influence of SNR on the probability of detection of OFDM signals 

impacted by different NUs is presented in Figures 6(a) – (c). The results presented there show that independently 

of the PU Tx power and OFDM modulation, higher noise fluctuations (characterized by a higher NU factor) will 

lower the probability of detection for any SNR level which is below the SNR threshold (ensures guaranteed PU  
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(a)        (b) 

    

    (c)       

Figure 6. Influence of SNR on the probability of detection for OFDM signals impacted with different NUs and 

transmitted with Tx power of: (a) 0.1 W; (b) 1 W; (c) 10 W  

 

detection). NU variations impact each OFDM signal independently of its Tx power and modulation order; 

however, for signals with lower Tx power, this impact is more evident, as reflected in the lower probabilities of 

detection. 

Additionally, for different Tx power levels, there is an SNR threshold above which the probability of PU 

signal detection can be guaranteed (Figures 6a – c). This SNR threshold is dominantly impacted by the level of Tx 

power and it is lower for the higher Tx powers of PU signal (5 dB for Tx power of 1 W and – 5dB for Tx power 

of 10 W). As indicated in Figure 6, the OFDM modulation order has no impact on the SNR threshold, since the 

modulation order does not have a direct impact on the probability of detection (relations 19, 25, 26, 31).  

The influence of different Tx powers and SNR levels on detection probability of joint RA and MA OFDM 

systems is presented with ROC curves in Figure 7. The obtained results are obtained for different SNRs (-7 dB/-

10 dB/-25 dB) of m- PSK/m-QAM modulated signals impacted by equal NU (ρ =1.02) in case of PU signal 

transmission at specific Tx power levels (0.1 W, 1 W, 10 W). The results confirm that the level of PU Tx power 

(relations 19 and 26) and SNR (relations 25 and 31) at the location of the SU have a significant impact on the 

probability of detection in OFDM systems. As expected, for higher levels of Tx power and for lower values of 

SNR, the probability of detection will be higher and vice versa. However, in Figure 7(a) we can see that for low 

values of Tx power (100 mW), the probability of detection at the position of the SU cannot be improved without 

a significant increase of the SNR (above 5 dB).  

On the other hand, Figure 7(c) shows that for significantly a higher Tx power (10 W), signal detection in the 

ED process can be guaranteed (probability of detection Pdi=100 %) for every SNR level above -7 dB. Such results 

confirm the impact of noise power on the quality of the ED process. Figure 8 presents the influence of SNR on the 

probability of detection for MA OFDM systems transmitting at two different Tx power levels (1 W/10 W) over a 

channel with equal channel conditions (equal NU factor ρ =1.01), the probability of false alarm (Pfai=10 %) and  
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(a)        (b)      

 

(c) 

Figure 7. ROC curves for OFDM signals transmitted in joint RA and MA systems with Tx power equal to: (a) 0.1 W; (b) 1 

W; (c) 10 W  

 
Figure 8. Probability of detection vs. SNR for MA OFDM system transmitting at two different Tx power levels 

 

different OFDM modulations. The presented results show that OFDM modulations do not have any impact on the 

probability of detection in MA systems for any SNR level if modulated signals are impacted with the same NU 

and transmitted with the same Tx power. However, a higher probability of detection can be noticed for signals of 

the same constellation order transmitted at higher Tx power, since higher Tx power means better SNR at the 

position of the SU. For lower SNR at the position of the SU, the MA OFDM system that transmits with higher Tx  
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 (a)            (b) 

Figure 9. ROC curves for m-PSK/m-QAM modulated signals transmitted with fixed Tx power and detected with 

different number of samples for: (a) equal NU (ρ=1.02); (b) two different levels of NUs (ρ=1.02, ρ=1.05) 

 

power means better SNR at the position of the SU. For lower SNR at the position of the SU, the MA OFDM system 

that transmits with higher Tx power will have a better probability of detection. Hence, in MA OFDM systems, 

transmission with higher Tx power improves the probability of detection for any SNR level at the position of the 

SU. However, this might have a negative impact in terms of interference and PU power consumption. 

 

7.4. The effect of the number of samples on the energy detection process 

Further analyses were dedicated to the impact of the number of samples on the ED capabilities of SU. In 

Figure 9, ROC curves for m-PSK/m-QAM modulated signals transmitted with fixed Tx power (1 W/100 mW) and 

detected with a different number of samples for different NU levels are presented. According to Figure 9(a), the 

number of samples has a strong impact on the ED performance of RA OFDM systems. In the case of channels 

with equal channel characteristics (equal SNR and NU), the probability of signal detection increases when a higher 

number of samples is used in the ED process of RA OFDM systems. This is because a higher number of samples 

means a higher number of attempts in a specific period during which the signal of the PU can be detected.  

Additionally, in Figure 9(b) ROC curves for m-PSK/m-QAM modulated signals in RA OFDM systems 

detected with the different number of samples for two different levels of NU variations (ρ=1.02, ρ=1.05) are 

presented. It can be observed that for higher values of NU (ρ=1.05), a higher number of samples must be used in 

order to achieve the probability of detection equal to the detection probabilities in channels impacted by lower NU 

(ρ=1.02). This is because a higher NU results in a higher degradation of the signal received, which requests more 

sensing attempts (number of samples) for accurate ED of the PU signal power which will have a better probability 

of detection. Hence, in MA OFDM systems, transmission with higher Tx power improves the probability of 

detection for any SNR level at the position of the SU. However, this might have a negative impact in terms of 

interference and PU power consumption. 

In Figure 10, ROC curves for different OFDM modulated signals detected with a different number of samples 

and for a signal transmitted at three different Tx power levels are presented. The results show that in joint RA and 

MA OFDM systems, a decrease in the number of samples and Tx power leads to a decrease in the probability of 

detection and vice versa. This is in line with theoretic analyses (relations 26 and 19) according to which Tx power 

and number of samples (N) directly impact the probability of detection. A higher Tx power for specific OFDM 

modulation means more energy at the position of SU in the ED process, while a higher number of samples N 

means more attempts for ED detection of the PU signal. Also, for some specific combination of Tx power, SNR 

and NU, there is a threshold N in the number of samples above which the probability of detection can be guaranteed 

for every OFDM modulation (Pdi= 100%). In the case of simulation scenario (Figure 10) with an SNR level equal 

to - 15 dB, this number of sample threshold will be lower for OFDM modulations having a higher constellation, 

since such modulations must be transmitted with higher Tx power in order to satisfy set SNR demand.  



 23 of 35 

 

 
(a)            (b) 

  

(c) 

Figure 10. ROC curves for different OFDM modulated signals detected with different number of samples and 

transmitted at Tx power equal to: (a) 0.1 W; (b) 1 W; c) 10 W  

 

 

Figure 11 presents the impact of SNR and the number of samples on the probability of detection (Pdi) for RA 

and MA OFDM system. The results are obtained for different Tx power levels and for the set probability of false 

alarm equal to Pfai=0.1 and fixed NU variation equal to 2% of AWGN. Based on the results obtained, a higher 

probability of detection can be achieved for a higher number of samples and higher SNR in case of any OFDM 

modulation (Figure 11). Since a higher SNR is a direct result of higher Tx power, the SNR threshold above which 

the probability of detection can be guaranteed (Pdi=100%) will be lower for signals sampled with a higher number 

of samples. Even for lower Tx powers, there are a number of samples which can guarantee the probability of 

detection if SNR is above the minimal threshold (Figure 11a).  

 

7.5. The effect of the probability of false alarm on the energy detection process 

The last analyses take into account the impact of the probability of false alarm on the probability of detection 

for different OFDM system design options. According to the definition, the probability of false alarm (Pfai) is the 

probability that the SU incorrectly declares that a PU is present when the PU is actually absent. When the PU is 

actually present and the SU correctly declares that the PU is present, the probability that the SU incorrectly declares 

that a PU is present increases. For that reason, in Figures 2-4, 7, 9 and 10, the increase in the probability of detection 

(Pdi) is followed by the increase in the probability of false alarm (Pfai).  

Some ED approaches are based on setting the probability of false alarm (Pfai) to some predefined value which 

must be satisfied during the ED process. Although it is preferable that the probability of a false alarm be kept at 

the lowest possible levels, values of up to 20% for false alarm probability are reasonable and practically used, 

which is the reason for selecting such values for analyses. 
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a)           b) 

  
c) 

Figure 11. Impact of SNR and number of samples on the probability of detection for joint RA and MA system of 

OFDM signal transmitted at: (a) 0.1 W; (b) 1 W; (c) 10 W 

 

Figure 12. Impact of SNR on the probability of detection for RA OFDM systems with different probabilities of 

false alarm 

 

In Figure 12, the relationship between SNR and the probability of detection has been presented for RA OFDM 

systems with respect to different values of probabilities of false alarms (1%, 10% 20%). The results are obtained 

for the equal number of samples (N=128) and equal NU factor (ρ=1.02). Taking into account some specific SNR 

(e.g. – 15 dB), the results presented in Figure 12 show that the probability of detection will be higher if the  
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a)           b)  

 

c) 

Figure 13. Impact of SNR and the probability of false alarm on the probability of detection for joint RA and MA 

OFDM systems transmitting at: (a) 0.1 W; (b) 1 W; (c) 10 W  

 

probability of false alarm is higher in case of transmission at fixed Tx power (RA OFDM systems). This means 

that for some SNR level at position of SU, correct ED estimations in periods when the PU is active have a higher 

impact on ED performance than incorrect ED estimations in the periods when the PU is not active.  

The interdependence between SNR and the probability of detection for joint RA and MA OFDM systems 

transmitting at different Tx power levels has been presented in Figure 13. The results are obtained for different 

probabilities of false alarm under equal channel conditions (NU factor ρ=1.02) and the number of samples 

(N=128). In Figure 13 we can notice that setting the probability of false alarm to a higher value increases the 

probability of detection for any Tx power and the corresponding modulation order. However, a higher probability 

of the false alarm also increases chances of a wrong decision of the SU and trade-off in selecting false alarm 

probability must take place. Also, the SNR threshold above which probability of detection is guaranteed is lower 

for signals with higher Tx power and a higher probability of false alarm (Figure 13). Additionally, for each of 

OFDM modulation schemes, Figure 13 shows there is an SNR threshold above which the probability of detection 

is guaranteed (𝑃𝑑𝑖 = 1). 

According to the results presented, the probability of a false alarm does not have any impact on this threshold. 

This threshold is lower for modulation schemes with higher constellation number since these modulation schemes 

must be transmitted at higher Tx power if the same SNR needs to be kept. For these reasons, the ED of OFDM 

signals based on a higher probability of a false alarm with a higher constellation order can be detected at lower 

SNR levels for the case of joint RA and MA OFDM systems.  
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8. Discussion and future research challenges 

This section contains discussions concerning performance issues and future scientific challenges related to 

the ED method. The discussion is based on the simulation results presented in the previous section for the ED 

performance of different OFDM system designs. Table 6 summarizes the main drawbacks of the ED method and 

possibilities for improvements of spectrum sensing based on ED. 

The simulation results presented in Figures 2, 3, 5(b) and 9 (b) prove that the main ED drawback is the 

degradation of detection accuracy with the increase of noise power variation (NU). This susceptibility of ED to 

the uncertainty in noise power can be improved through dynamic adaptation of the decision threshold (Table 6). 

An appropriate selection of the detection threshold can provide the primary user with adequate protection, reduce 

spectrum-sensing error and improve spectrum utilization. Considerable research efforts related to this topic have 

been presented so far in literature [65-67]. In [65] the authors analyze the selection of the threshold based on the 

bounding of the probability of false alarm and then maximizing the detection probability by iteratively updating 

the value of the threshold.  

Although the paper lacks an explanation of noise level estimation, threshold selection is dynamically adapted 

to the noise level of the received signal. To minimize the spectrum- sensing error in the presence of noise, dynamic 

selection of the threshold using a discrete Fourier transform filter bank method is proposed in [66]. To set a new 

value of the sensing threshold, the proposed approach uses the gradient-based updates. [67] proposes an adaptive 

threshold detection method based on an image binarization technique which dynamically estimates the threshold 

based on previous iteration decision statistics and other parameters such as SNR, the number of samples, and the 

targeted probabilities of detection and false alarm. To cope with NU, a double-threshold technique is proposed in 

[68, 69], defining free spectrum if the energy of the samples is smaller than the lower threshold level, and occupied 

spectrum if the energy of the samples is higher than the higher threshold level. Although the proposed algorithm 

decreases the collision probability, its detection performance is not acceptable for low SNR values and the criteria 

for selection of the two threshold levels is not explained. The author in [70] proposed an adaptive threshold that 

consists of two control parameters: the Constant Detection Rate (CDR) method which sets the target probability 

of detection and the Constant False Alarm Rate (CFAR) method which consists of fixing a target probability of 

false alarm. Then, the selection of the threshold is based on the minimization of spectrum-sensing error. Since 

noise power constantly changes over time, the dynamic adaptation of a detection threshold is a challenging task 

and no optimal algorithms have been proposed so far. 

Hence, advancements in the dynamic threshold adaptation algorithms for better robustness to the NU remains 

an open research issue for ED spectrum sensing. Additionally, since previously mentioned related works validate 

the dynamic selection of the threshold through simulations, and several system parameters that are assumed 

constant in simulations may vary over time, a real scenario validation of newly-proposed algorithms must take 

place. The research focused on the dynamic selection of the threshold based on measuring the real power of the 

noise level present in the signal received during the detection process, shows an increase in the probability of 

detection compared to the ones of ED with a static threshold [27].  

Since ED performance strongly depends on the reliability and accuracy of the noise level estimate, which is 

used for computing of SNR, it was important to evaluate ED under certain NU scenarios as is done in this work 

for different OFDM system designs. According to the results presented in Figures 5(a), 6, 11 -13, another important 

drawback of the ED method is the inability to detect signals at low SNRs at the position of SU, also proven in 

[71], [72]. Simulation results show that if the signal power is under a certain SNR value (known as SNR wall [73]), 

the energy detector cannot distinguish the signal from a slightly larger noise power, regardless of the sensing period 

duration or the used number of samples [22]. Since measuring NU is challenging because this parameter varies 

with time, ED techniques require an estimate of the noise power to compute SNR. This estimation can be done 

using a channelized radiometer in the frequency domain [74, 75], which divides the total frequency band into 

smaller channels and then integrates the energy from each channel separately using a radiometer. Also, the noise 

level may be estimated from guard bands. Due to the impact of the noise power estimation error [21], an adaptive 

noise level estimation concept is proposed in [76] based on multiple signal classification algorithms used to 

separate the signal and noise subspaces and estimate the noise floor. However, the development of new methods 

for accurate and reliable noise level estimate for ED spectrum sensing are missing. New methods which offer more 

precise noise level estimation during the ED process can contribute to the improvement of signal detection at lower 

SNRs (Table 6).  

A further ED drawback is related to the degradation of detection accuracy for a low number of samples (Table 

6), which is also proven by the simulation results presented in Figures 9 - 11. To achieve a high probability of  
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Table 6. Main drawbacks, research challenges and possible improvements of the ED method 

Main ED drawbacks ED research challenges Expected improvements 

Degradation of detection accuracy due 

to variations in noise power (NU) 

Development of new dynamic 

threshold adaptation algorithms and 

validation in real environments 

Improved detection accuracy in 

environments impacted by noise 

fluctuations; Better PU protection 

Unable to detect signals with low 

SNR 

Development of new methods for 

accurate and reliable noise level 

estimate 

Improved detection of signals at lower 

SNRs 

Degradation of detection accuracy for 

a low number of samples (or short 

sensing duration) 

Improving ED through reduction in 

sensing time (number of samples) 

Reduces energy consumption for 

cognitive WSN; Increases throughput 

of SU 

 

detection, ED requires a large number of samples or longer sensing period [68, 77, 78]. However, during the 

sensing period, data transmission is stopped, thus increasing end-to-end delay and reducing SU throughput. Ideally, 

the sensing time should be as short as possible, which negatively affects the detection performance (as presented 

in Section 7.4) and requires more frequently sensing period repetition. Hence, in a CRN, periodic sensing intervals 

and the number of samples (sensing time) are optimized to maximize sensing accuracy and/or SU throughput. 

Adjusting the periodic sensing interval in ED affects the capability of the SU to exploit the spectrum opportunities 

[71, 79, 80]. Moreover, the number of samples influences ED performance in terms of the probability of detection 

(as shown in Section 7.4). The throughput sensing trade-off for the ED method is analyzed in [81], where the 

number of samples used is optimized to maximize the throughput for the SUs under the restriction that the PUs 

are appropriately protected. Still, identifying the sensing period and how frequently it should be performed 

(sensing frequency) is a crucial design element which requests a deeper investigation in order to improve ED 

spectrum sensing (Table 6).  

The ED drawback concerning the degradation of detection accuracy for a low number of samples is additionally 

related to the possibility of implementing the ED method in cognitive wireless sensor networks (CWSN). Although 

using ED as a sensing method can be most suitable for implementation in CWSN where low power sensor nodes 

can benefit from the low computation complexity of the ED method [82-84], a larger number of samples for 

accurate detection negatively contributes to the energy efficacy of the sensor nodes. In CSWN, keeping the 

transceiver of the sensor node active just for spectrum sensing causes excessive power consumption [85]. Hence, 

only the development of novel approaches which will combine the low computation complexity of ED with 

minimum sensing duration can ensure the applicability of the ED method in resource-constrained CWSN 

requesting high power efficiency towards maximizing the sensors’ lifetime. 

Besides ED, several different narrowband local spectrum sensing methods have been proposed to enhance 

the reliability and accuracy of available spectrum detection. Table 7 presents a performance comparison of 

prominent non-cooperative local spectrum sensing methods. Compared to the Matched filter detection (MFD) 

method [7, 86-92], ED is far less accurate especially for the detection of low SNR signals. The MFD method is 

the optimal technique for local spectrum sensing when the PU signal is known since this method ensures very 

good detection performance for a small number of samples. However, compared to the ED method, its main 

drawback is higher computational complexity and the need for exact prior knowledge of the PU signal, which may 

not always be obtainable since the PU and the SU do not actively communicate. Additionally, different receivers 

must be used to receive different signal types which further increases implementation complexity, sensing time 

and power expenditure of the MFD method.  

 

8.1 Comparison with other non-cooperative spectrum sensing methods 

Another sensing method that can be viewed as a simplified MFD method is Waveform-based detection 

method [82, 93-95]. This method has better accuracy for shorter sensing time than the ED method (Table 7). 

Although less information about the PU signal is required compared to MFD, this method still needs information 

about PU signal in terms of signal pattern (transmitter pilots, preamble, etc.) of every PU. In case of many different 

PUs, a signal pattern database may be too large and complex for single SU management. Additionally, this method 

requests exact synchronisation between PU and SU and compared to the MFD, Waveform-based sensing has a 

lower complexity, which is however more complex than the ED method [96]. 

Unlike ED, the Cyclostationary detector can differentiate the primary signal from interference and noise 

using the periodicity property in low SNRs [92, 97-101] (Table 7). The cyclostationary detector is an ideal method 

for the detection of low SNR signals since it is significantly more robust against NU than ED because noise is 

typically not cyclostationary [101]. The Cyclostationary detector requires a priori knowledge of the PU signal  
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Table 7. Performance comparison of non-cooperative local spectrum sensing methods and the ED method 

Parameter Matched 

filter 

detection 

method 

Cyclostation

ary feature 

method 

Entropy 

-based 

detection 

method 

Waveform 

-based 

detection 

method 

Goodness 

of Fit 

(GoF) test 

method 

Energy 

detection 

(ED) 

method 

Eigenvalue 

detection 

method 

Detection accuracy at 

all SNR levels 

Optimal 

for known 

PU 

Very good 

(the best for 

low SNR) 

Good Very  

good 

Moderate Weak at 

low SNRs 

Moderate 

Request prior 

information 

about PU signal 

Yes, 

Perfect 

Yes No Yes No No No 

Sensing time (number 

of samples) for 

accurate detection 

 

Low 

 

 

High 

 

 

High 

 

 

Low 

 

 

Low 

 

High 

 

 

High 

 

Robust  

against NU 

Yes Yes Yes Yes No No Yes 

Computational 

complexity 

High The most 

complex 

Moderate Moderate Low The least 

complex 

High 

 

which makes this detection method more computationally complex than the matched filter and especially the ED 

method [82, 90, 101]. In order to get a good detection performance, the Cyclostationary detector needs a large 

number of samples which increases sensing time, power requirements and is not cost-effective especially for 

CWSNs. 

The Entropy detector (Table 7) has better detection accuracy than ED since it detects signals with very low 

SNR; however, a priori knowledge of the PU is required [90]. The algorithms required for this detector are 

therefore more complex than for ED. This detector type needs a high number of samples for accurate detection; 

however, it is more robust to the NU than ED [102-104].  

Different covariance matrix or Eigenvalue-based detection methods have been widely investigated for blind 

spectrum-sensing methods [82, 105-111], most of which perform better than the ED in terms of detection accuracy 

(Table 7). Compared to ED, Eigenvalue-based detection is more robust to the NU problem since it utilizes the 

correlation structure inherent in the received data for sensing and differences in the eigenvalues of the statistical 

covariance matrix of signal and noise. As in the case of ED, there is no requirement of a priori information about 

the PU signal, but the method has large computation complexity due to a high number of samples needed for the 

computation of the covariance matrix and the eigenvalue decomposition of the covariance matrix. Reduction in 

the sensing time for some new Eigenvalue-based methods is proposed in [112].  

Goodness of fit (GoF) test-based sensing utilizes the distribution characteristics of the background noise 

(Table 7). As for the ED method, GoF does not request knowledge of the PU signal; however, it is able to obtain 

a better detection performance even with a small number of samples (approximately 2.4 times lower than the ED 

method) [82, 113-118]. Many types of GoF tests are proposed in the literature, with the main difference in how to 

calculate the test statistic, i.e. the distance between the empirical cumulative distribution (CDF) of the PU signal 

observations made locally at the SU and the noise CDF [119-122]. The computational complexity of the GoF 

method is low and similar to the ED method which makes the GoF test-based method valuable for practical 

implementations.  

This comparison of different local spectrum sensing techniques and the ED technique shows that ED has 

many weaknesses. However, ED is the most commonly used spectrum sensing technique as it does not require any 

information about the nature of the PU signal. In addition, it does not involve complicated signal processing and 

has low complexity making it interesting for practical implementation. The abovementioned fundamental 

challenges and many others need to be precisely addressed in order to exploit the all possible advantages of the 

ED method. 

 

9. Conclusions 

Spectrum sensing in the ED process can be impaired by the NU which is manifested as a random fluctuation 

of noise power in space and time. In this work, an overview of the impact of NU on the performance of the ED 

process has been presented. The analyses are performed through different simulations based on the developed 

algorithms which simulate the ED process of OFDM signals performed for three different OFDM system design 

options (RA, MA, and joint RA and MA). 
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The presented review analyses show that the NU had a significant impact on the probability of PU detection 

for each of OFDM system designs. Higher levels of NU decrease the probability of signal detection which is lower 

for signals transmitted at lower transmit powers. The results of the analyses also show that for higher SNR at the 

position of SU, the probability of ED will be higher. The number of samples has an important impact on ED since 

higher probabilities of signal detection have been obtained for a higher frequency of sampling during the ED 

process. The overall conclusion is that the probability of PU energy detection for any OFDM system design will 

be higher for the reception of OFDM signals having lower NU, higher SNR ratio, which are transmitted at higher 

PU transmit power and detected with a higher number of samples.  

Hence, the main ED drawbacks in terms of degradation of the detection accuracy caused by the variations in 

noise power (NU), the inability of detecting OFDM signals with low SNRs and the reduction of detection accuracy 

for a low number of samples have been confirmed through extensive simulations. Literature overview was 

followed by the discussion related to the main research challenges which can contribute to the improvement of 

major ED drawbacks. The discussion is further enriched with a comparison between the ED method and other 

local spectrum-sensing methods using benchmarks such as detection accuracy, knowledge of PU signal, sensing 

time, robustness to a low SNRs and computational complexity. The comparison shows that there is no ideal 

spectrum-sensing method and that ED has a lower detection accuracy, higher sensing time and lower robustness 

at low SNRs compared to most of the spectrum-sensing approaches analyzed. However, the lowest computational 

complexity, lack of prior knowledge of PU signal and applicability for detection of OFDM signals, justifies further 

investigations to improve the ED method in order to keep the status of the most frequently used local spectrum 

sensing approach.  

Since the static threshold was used for the detection of PU signals in the ED process analyzed, our future 

work will be dedicated to the comprehensive analyses of the impact of the dynamic threshold on ED performance 

of the OFDM signals. 
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